About Lesson
1. Calculate the remainder when is divided by .
试计算 除以 所得余数。
试计算 除以 所得余数。
2. Given that and have the same remainder when divided by , find the possible values of a.
已知 和 除以 所得余数相等,求a 的可能值。
已知 和 除以 所得余数相等,求a 的可能值。
3. The expression leaves a remainder of and when divided by and respectively. Calculate the value of a and b.
当式子 除以 和 所得余数分别为 和. 试计算a 和 b 的值。
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]f (–2) = 19, f (1) = –8, 解联立[/bg_collapse]
当式子 除以 和 所得余数分别为 和. 试计算a 和 b 的值。
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]f (–2) = 19, f (1) = –8, 解联立[/bg_collapse]
4. The expression leaves a remainder of k when divided by and a remainder of when divided by . Show that .
式子 当除以 时所得余数为 k 和除以时所得余数为 . 试证 .
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]f (–2) = k, f (3) = 3k + 5,用代入消元法消掉k。[/bg_collapse]
式子 当除以 时所得余数为 k 和除以时所得余数为 . 试证 .
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]f (–2) = k, f (3) = 3k + 5,用代入消元法消掉k。[/bg_collapse]
5. A polynomial has a remainder 15 when divided by , and 9 when divided by . Find the remainder when is divided by .
一多项式 当除以 时所得余数为15, 及当除以 时所得余数为 9. 求当 除以 时所得余式.
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 则, 后解联立得a, b。余式为[/bg_collapse]
一多项式 当除以 时所得余数为15, 及当除以 时所得余数为 9. 求当 除以 时所得余式.
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 则, 后解联立得a, b。余式为[/bg_collapse]
6. If deg , and f (x) is divided by, , , the remainders are , and respectively. Find .
若 为四次多项式,且当 除以, , , 所得余数分别为 , 和 . 求 .
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 则, 后解联立得, . 把, 代入[/bg_collapse]
若 为四次多项式,且当 除以, , , 所得余数分别为 , 和 . 求 .
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 则, 后解联立得, . 把, 代入[/bg_collapse]
7. where are constants. If satisfy the following conditions:
其中 为常数。若其满足以下各条件:
其中 为常数。若其满足以下各条件:
(i) when divided by , obtain the remainder ,
当 除以 , 所得余式为 ,
(ii) when divided by , we obtain the remainder .
当 除以 , 所得余数为 .
Find the values of , and .
求, 和 的值.
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]从 (i) 可得 . 从 (ii) 可得. 代入可得,将 展开可得 和 的值[/bg_collapse]
8. When the polynomial is divided by , , the remainder is and respectively. Find the remainder when is divided by .
当多项式 除以, , 所得余式分别为 和 . 求当 除以 所得余式.
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 可得。余式为[/bg_collapse]
当多项式 除以, , 所得余式分别为 和 . 求当 除以 所得余式.
[bg_collapse view=”link” color=”#22A609″ expand_text=”hint” collapse_text=”close hint” ]设, 可得。余式为[/bg_collapse]
Answer 答案:
(1) 13
(2) 1, 2
(3) 1, –5
(5) 2x + 13
(6)
(7) 1, 1, –7
(8)