About Lesson
5.3 Ellipse 椭圆
1. Find the centre, vertex, axis of symmetry, major semi-axis, minor semi-axis, eccentricity, focus, directrix and length of latus rectum for the following ellipse and sketch the graph.
求以下各椭圆的中心, 顶点, 对称轴, 半长轴之长, 半短轴之长, 离心率, 焦点, 准线和通径长度並描其图形
(a)
(b)
(c)
(d)
(e)
Answer (a) :
Answer (b) :
Answer (c) :
Answer (d) :
Answer (e) :
2. Find the equation of the ellipse with center at (-3, 1), one of vertices at (-5, 1), length of latus rectum equal to 1 and
求椭圆方程式其中心在(-3, 1), 其中一顶点在(-5, 1), 通径长度为1且
求椭圆方程式其中心在(-3, 1), 其中一顶点在(-5, 1), 通径长度为1且
(a) major axis parallel x-axis,
长轴平行于x轴,
(b) major axis parallel y-axis,
长轴平行于y轴,
Answer :
(a)
(b)
3. Find the equation of the ellipse which has same eccentricity and left directrix with ellipse , and also take its right focus to be the left focus.
求与椭圆有相同的离心率和公共的左准线,且以它的右焦点为左焦点的椭圆方程.
Answer :
4. Given that the major axis of an ellipse is 4, y-axis be its directrix, the left focus is on the parabola . Find the equation of the ellipse when eccentricity is .
己知椭圆的长轴长为4,以y轴为准线,左焦点在拋物线上。求当离心率为时, 此椭圆方程式。
Answer :
5. Given that F(2, -2), F(2, 0) are the foci of a ellipse, straight line y = 3 is a directrix of the ellipse, find the equation of the ellipse.
已知椭圆的焦点为F(2, -2), F(2, 0), 直线y = 3是椭圆的一条准线, 求椭圆的方程.
Answer :
6. Find the equation of the ellipse with vertices at (0, -1) and (12, -1), a focus at .
求顶点在 (0, -1) 和 (12, -1), 一焦点在 的椭圆方程式