About Lesson
11.2 Gradient 斜率
(1) Given that A(–1, 4), B(2, –3), find the gradient and the angle of inclination of line AB
A(–1, 4), B(2, –3), 求直线AB 的斜率和倾斜角。
Answer:
,
2. If points (1, -1), (p, 2) and (, ) are collinear, find the value of p.
若点 (1, -1), (p, 2) 和 (, ) 共线, 求 p 的值。
Answer:
,
3. Prove that (a, 0), (, 2at) and are collinear.
证明 (a, 0), (, 2at) 和 共线。
4. Points P(-1, 11), Q(2, 5) and R(t, 3), given that PQR = 90, find the value of t.
If the line PQ is prolonged to S such that QS = PQ. Find the coordinate of S.
点P(-1, 11), Q(2, 5) 和 R(t, 3), 已知 PQR = 90, 求 t 的值.
若线段PQ 延长到S 使得 QS = PQ. 求S 的坐标.
Answer:
–2, (5, –6 )
5. ABCD is a rhombus that the coordinates of A, B, C and D are (3, 2), (7, p), (q, r) and (2, 6) respectively. Calculate the values of p, q and r.
ABCD 为一菱形且A, B, C 和 D 的坐标分别为 (3, 2), (7, p), (q, r) 和 (2, 6). 计算 p, q 和 r的值。
Answer:
3, 6, 7
6. Prove that (5, 2), (2, 7), (-3, 4) and (0, -1) are the vertices of a square.
证明(5, 2), (2, 7), (-3, 4) 和 (0, -1) 是一正方形的顶点。