Course Content
高二数学 | 高级数学
About Lesson
7.4 Application of Binomial Theorem in Approximate Calculation 二项式定理在近似值计算中的应用


[1]

Obtain the first four terms in the expansion of (1 + p)^6 in ascending powers of p. By using p = x + x^2, expand (1 + x + x^2 )^6 as far as the term containing x^2. Then find the value of (1.0101)^6, giving your answer correct to 3 decimal places.

以p的升幂式表示(1 + p)^6 的首四项. 用p = x + x^2 展开(1 + x + x

*** QuickLaTeX cannot compile formula:
^

*** Error message:
Missing { inserted.
leading text: $^$

)^6 到有 x^2 的那一项. 跟着求(1.0101)^6 , 答案准确至小数三位数.

Answer:
1.062
[2]

Use the binomial theorem to find the values of the following :
用二项式定理求以下的值

(a)
\sqrt{1.001}, correct to six places of decimal.

\sqrt{1.001} , 准确至小数六位数.

(b)
\frac{1}{(1.02)^2}, correct to four places of decimals.

\frac{1}{(1.02)^2} ,准确至小数四位数.

(c)
\sqrt{1.998} ,correct to six places of decimals.
\sqrt{1.998} , 准确至小数六位数.

Answer:
(a) 1.000500

(b) 0.9612

(c) 1.413506

[3]

Find the first four terms of the expansion of (1 – 8x)^\frac{1}{2} in ascending powers of x. Substitute x = \frac{1}{100} and obtain the value of \sqrt{23} correct to five significant figures.

按x的升幂展开(1 – 8x)^\frac{1}{2} 的首四项. 代入x = \frac{1}{100} , 求\sqrt{23}之值准确至五位有效数字.

Answer:
1 – 4x – 8x^2 – 32x^3 – …,

4.7958

[4]

If x is so small that x^3 and higher powers can be neglected, prove that \left(\frac{1-x}{1+x}\right)^p = 1-2px+2p^2x^2. Hence, find an approximation of \sqrt[5]{\frac{99}{101}} to five decimal places.

若x非常小使到x^3 与更高次幂均可略去不计, 试证 \left(\frac{1-x}{1+x}\right)^p = 1-2px+2p^2x^2 . 据此, 试求 \sqrt[5]{\frac{99}{101}} 的近似值, 取至小数点五位.

Answer:
0.99601